Takes an object of class smdi and styles it to a publication-ready gt table
smdi_style_gt.Rd
This function takes either an object of class smdi or data.frame or tibble as input and styles it to a publication-ready table based on the gt package. The output is of class gt and can take further gt-based arguments for customization.
Arguments
- smdi_object
object of class "smdi" or data.frame/tibble
- include_little
can be logical (TRUE/FALSE) for displaying Little's p-value that is part of an "smdi" object or a separate object of class "little"
- font_size
integer to determine table font size
- tbl_width
integer to determine table width
Examples
library(smdi)
library(dplyr)
smdi_diagnose(
data = smdi_data,
covar = "egfr_cat",
model = "cox",
form_lhs = "Surv(eventtime, status)"
) %>%
smdi_style_gt()
#> <div id="ochcnkhjza" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
#> <style>#ochcnkhjza table {
#> font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
#> -webkit-font-smoothing: antialiased;
#> -moz-osx-font-smoothing: grayscale;
#> }
#>
#> #ochcnkhjza thead, #ochcnkhjza tbody, #ochcnkhjza tfoot, #ochcnkhjza tr, #ochcnkhjza td, #ochcnkhjza th {
#> border-style: none;
#> }
#>
#> #ochcnkhjza p {
#> margin: 0;
#> padding: 0;
#> }
#>
#> #ochcnkhjza .gt_table {
#> display: table;
#> border-collapse: collapse;
#> line-height: normal;
#> margin-left: auto;
#> margin-right: auto;
#> color: #333333;
#> font-size: 13px;
#> font-weight: normal;
#> font-style: normal;
#> background-color: #FFFFFF;
#> width: 800px;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #A8A8A8;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #A8A8A8;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_caption {
#> padding-top: 4px;
#> padding-bottom: 4px;
#> }
#>
#> #ochcnkhjza .gt_title {
#> color: #333333;
#> font-size: 125%;
#> font-weight: initial;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-color: #FFFFFF;
#> border-bottom-width: 0;
#> }
#>
#> #ochcnkhjza .gt_subtitle {
#> color: #333333;
#> font-size: 85%;
#> font-weight: initial;
#> padding-top: 3px;
#> padding-bottom: 5px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-color: #FFFFFF;
#> border-top-width: 0;
#> }
#>
#> #ochcnkhjza .gt_heading {
#> background-color: #FFFFFF;
#> text-align: center;
#> border-bottom-color: #FFFFFF;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_bottom_border {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_col_headings {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_col_heading {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 6px;
#> padding-left: 5px;
#> padding-right: 5px;
#> overflow-x: hidden;
#> }
#>
#> #ochcnkhjza .gt_column_spanner_outer {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: normal;
#> text-transform: inherit;
#> padding-top: 0;
#> padding-bottom: 0;
#> padding-left: 4px;
#> padding-right: 4px;
#> }
#>
#> #ochcnkhjza .gt_column_spanner_outer:first-child {
#> padding-left: 0;
#> }
#>
#> #ochcnkhjza .gt_column_spanner_outer:last-child {
#> padding-right: 0;
#> }
#>
#> #ochcnkhjza .gt_column_spanner {
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: bottom;
#> padding-top: 5px;
#> padding-bottom: 5px;
#> overflow-x: hidden;
#> display: inline-block;
#> width: 100%;
#> }
#>
#> #ochcnkhjza .gt_spanner_row {
#> border-bottom-style: hidden;
#> }
#>
#> #ochcnkhjza .gt_group_heading {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> text-align: left;
#> }
#>
#> #ochcnkhjza .gt_empty_group_heading {
#> padding: 0.5px;
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> vertical-align: middle;
#> }
#>
#> #ochcnkhjza .gt_from_md > :first-child {
#> margin-top: 0;
#> }
#>
#> #ochcnkhjza .gt_from_md > :last-child {
#> margin-bottom: 0;
#> }
#>
#> #ochcnkhjza .gt_row {
#> padding-top: 3px;
#> padding-bottom: 3px;
#> padding-left: 5px;
#> padding-right: 5px;
#> margin: 10px;
#> border-top-style: solid;
#> border-top-width: 1px;
#> border-top-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 1px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 1px;
#> border-right-color: #D3D3D3;
#> vertical-align: middle;
#> overflow-x: hidden;
#> }
#>
#> #ochcnkhjza .gt_stub {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ochcnkhjza .gt_stub_row_group {
#> color: #333333;
#> background-color: #FFFFFF;
#> font-size: 100%;
#> font-weight: initial;
#> text-transform: inherit;
#> border-right-style: solid;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> padding-left: 5px;
#> padding-right: 5px;
#> vertical-align: top;
#> }
#>
#> #ochcnkhjza .gt_row_group_first td {
#> border-top-width: 2px;
#> }
#>
#> #ochcnkhjza .gt_row_group_first th {
#> border-top-width: 2px;
#> }
#>
#> #ochcnkhjza .gt_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ochcnkhjza .gt_first_summary_row {
#> border-top-style: solid;
#> border-top-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_first_summary_row.thick {
#> border-top-width: 2px;
#> }
#>
#> #ochcnkhjza .gt_last_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_grand_summary_row {
#> color: #333333;
#> background-color: #FFFFFF;
#> text-transform: inherit;
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ochcnkhjza .gt_first_grand_summary_row {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-top-style: double;
#> border-top-width: 6px;
#> border-top-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_last_grand_summary_row_top {
#> padding-top: 8px;
#> padding-bottom: 8px;
#> padding-left: 5px;
#> padding-right: 5px;
#> border-bottom-style: double;
#> border-bottom-width: 6px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_striped {
#> background-color: rgba(128, 128, 128, 0.05);
#> }
#>
#> #ochcnkhjza .gt_table_body {
#> border-top-style: solid;
#> border-top-width: 2px;
#> border-top-color: #D3D3D3;
#> border-bottom-style: solid;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_footnotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_footnote {
#> margin: 0px;
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ochcnkhjza .gt_sourcenotes {
#> color: #333333;
#> background-color: #FFFFFF;
#> border-bottom-style: none;
#> border-bottom-width: 2px;
#> border-bottom-color: #D3D3D3;
#> border-left-style: none;
#> border-left-width: 2px;
#> border-left-color: #D3D3D3;
#> border-right-style: none;
#> border-right-width: 2px;
#> border-right-color: #D3D3D3;
#> }
#>
#> #ochcnkhjza .gt_sourcenote {
#> font-size: 90%;
#> padding-top: 4px;
#> padding-bottom: 4px;
#> padding-left: 5px;
#> padding-right: 5px;
#> }
#>
#> #ochcnkhjza .gt_left {
#> text-align: left;
#> }
#>
#> #ochcnkhjza .gt_center {
#> text-align: center;
#> }
#>
#> #ochcnkhjza .gt_right {
#> text-align: right;
#> font-variant-numeric: tabular-nums;
#> }
#>
#> #ochcnkhjza .gt_font_normal {
#> font-weight: normal;
#> }
#>
#> #ochcnkhjza .gt_font_bold {
#> font-weight: bold;
#> }
#>
#> #ochcnkhjza .gt_font_italic {
#> font-style: italic;
#> }
#>
#> #ochcnkhjza .gt_super {
#> font-size: 65%;
#> }
#>
#> #ochcnkhjza .gt_footnote_marks {
#> font-size: 75%;
#> vertical-align: 0.4em;
#> position: initial;
#> }
#>
#> #ochcnkhjza .gt_asterisk {
#> font-size: 100%;
#> vertical-align: 0;
#> }
#>
#> #ochcnkhjza .gt_indent_1 {
#> text-indent: 5px;
#> }
#>
#> #ochcnkhjza .gt_indent_2 {
#> text-indent: 10px;
#> }
#>
#> #ochcnkhjza .gt_indent_3 {
#> text-indent: 15px;
#> }
#>
#> #ochcnkhjza .gt_indent_4 {
#> text-indent: 20px;
#> }
#>
#> #ochcnkhjza .gt_indent_5 {
#> text-indent: 25px;
#> }
#> </style>
#> <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
#> <thead>
#> <tr class="gt_col_headings">
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Covariate">Covariate</th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="ASMD (min/max)<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>1</sup></span>">ASMD (min/max)<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>1</sup></span></th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="p Hotelling<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>1</sup></span>">p Hotelling<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>1</sup></span></th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="AUC<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>2</sup></span>">AUC<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>2</sup></span></th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="beta univariate (95% CI)<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>3</sup></span>">beta univariate (95% CI)<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>3</sup></span></th>
#> <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="beta (95% CI)<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>3</sup></span>">beta (95% CI)<span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>3</sup></span></th>
#> </tr>
#> </thead>
#> <tbody class="gt_table_body">
#> <tr><td headers="covariate" class="gt_row gt_left">egfr_cat</td>
#> <td headers="asmd_median_min_max" class="gt_row gt_left">0.243 (0.010, 0.485)</td>
#> <td headers="hotteling_p" class="gt_row gt_left"><.001</td>
#> <td headers="rf_auc" class="gt_row gt_left">0.629</td>
#> <td headers="estimate_univariate" class="gt_row gt_left">0.06 (95% CI -0.03, 0.15)</td>
#> <td headers="estimate_adjusted" class="gt_row gt_left">-0.01 (95% CI -0.10, 0.09)</td></tr>
#> </tbody>
#>
#> <tfoot class="gt_footnotes">
#> <tr>
#> <td class="gt_footnote" colspan="6"> p little: <.001, Abbreviations: ASMD = Median absolute standardized mean difference across all covariates, AUC = Area under the curve, beta = beta coefficient, CI = Confidence interval, max = Maximum, min = Minimum</td>
#> </tr>
#> <tr>
#> <td class="gt_footnote" colspan="6"><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>1</sup></span> Group 1 diagnostic: Differences in patient characteristics between patients with and without covariate</td>
#> </tr>
#> <tr>
#> <td class="gt_footnote" colspan="6"><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>2</sup></span> Group 2 diagnostic: Ability to predict missingness</td>
#> </tr>
#> <tr>
#> <td class="gt_footnote" colspan="6"><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;"><sup>3</sup></span> Group 3 diagnostic: Assessment if missingness is associated with the outcome (univariate, adjusted)</td>
#> </tr>
#> </tfoot>
#> </table>
#> </div>